Ensemble of optimized echo state networks for remaining useful life prediction

نویسندگان

  • Marco Rigamonti
  • Piero Baraldi
  • Enrico Zio
  • Indranil Roychoudhury
  • Kai Goebel
  • Scott Poll
چکیده

The use of Echo State Networks (ESNs) for the prediction of the Remaining Useful Life (RUL) of industrial components, i.e. the time left before the equipment will stop fulfilling its functions, is attractive because of their capability of handling the system dynamic behavior, the measurement noise, and the stochasticity of the degradation process. In particular, in this paper we originally resort to an ensemble of ESNs, for enhancing the performances of individual ESNs and providing also an estimation of the uncertainty affecting the RUL prediction. The main methodological novelties in our use of ESNs for RUL prediction are: i) the use of the individual ESN memory capacity within the dynamic procedure for aggregating of the ESNs outcomes; ii) the use of an additional ESN for estimating the RUL uncertainty, within the Mean Variance Estimation (MVE) approach. With these novelties, the developed approach outperforms a static ensemble and a standard MVE approach for uncertainty estimation in tests performed on a synthetic and two industrial datasets. © 2017 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Satellite Lithium-Ion Battery Remaining Cycle Life Prediction with Novel Indirect Health Indicator Extraction

Prognostics and remaining useful life (RUL) estimation for lithium-ion batteries play an important role in intelligent battery management systems (BMS). The capacity is often used as the fade indicator for estimating the remaining cycle life of a lithium-ion battery. For spacecraft requiring high reliability and long lifetime, in-orbit RUL estimation and reliability verification on ground shoul...

متن کامل

Remaining Useful Life Prediction for Rolling Element Bearing Based on Ensemble Learning

Information fusion is becoming state-of-the-art methodology for performance assessment of engineering assets. Efficiently and smartly combining multi-source information and relevant models from the interested object, more accurate and reliable diagnostic and prognostic results regarding the object can be achieved, which are especially significant for the condition-based maintenance and prognost...

متن کامل

On the Statistical Challenges of Echo State Networks and Some Potential Remedies

Echo state networks are powerful recurrent neural networks. However, they are often unstable and shaky, making the process of finding an good ESN for a specific dataset quite hard. Obtaining a superb accuracy by using the Echo State Network is a challenging task. We create, develop and implement a family of predictably optimal robust and stable ensemble of Echo State Networks via regularizing t...

متن کامل

Improving the Prediction Accuracy of Echo State Neural Networks by Anti-Oja's Learning

Echo state neural networks, which are a special case of recurrent neural networks, are studied from the viewpoint of their learning ability, with a goal to achieve their greater prediction ability. A standard training of these neural networks uses pseudoinverse matrix for one-step learning of weights from hidden to output neurons. This regular adaptation of Echo State neural networks was optimi...

متن کامل

An Adaptive Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-ion Batteries

Prognostics is an emerging science of predicting the health condition of a system (or its components) based upon current and previous system states. A reliable predictor is very useful to a wide array of industries to predict the future states of the system such that the maintenance service could be scheduled in advance when needed. In this paper, an adaptive recurrent neural network (ARNN) is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 281  شماره 

صفحات  -

تاریخ انتشار 2018